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Abstract

We describe a parallel implementation of an Adaptive Mesh Re-
finement algorithm for gas dynamics which runs with high efficiency
upon a 16 processor Cray C-90.

1 Introduction

Adaptive Mesh Refinement(AMR) is a algorithmic technique which has
been shown to save as much as an order of magnitude in computational
time on 3D hyperbolic systems of partial differential equations (PDE’s)
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[5]. AMR can be implemented very efficiently on vector architectures
because it implements its adaptivity on relatively coarse grained grids
which each contain many thousands of cells. However, relatively little
work has been done to this point in implementing AMR algorithms
upon parallel computers [1, 2]. We will describe in this paper an ap-
proach appropriate to a shared-memory architecture such as a Cray
C-90.

The parallelization of an AMR, algorithm offers interesting chal-
lenges. Typically the individual grid-patches of an AMR algorithm are
not uniform, and indeed cover a broad span of sizes and shapes. It
would therefore be quite inefficient to force the processors of a parallel
computer to attack the problem in lock-step (see however the approach
in [2]). The approach described in this paper avoids this problem by
allowing each processor to compute asynchronously and is applicable
on both dedicated and non-dedicated systems.

Implementations of AMR algorithms are typically quite complex,
requiring tens of thousands of lines to express the core algorithm, com-
pletely exclusive of the user interface. It is very desirable that the
parallel implementation of the AMR algorithm differ little from the
original serial implementation. The reason is that all large scale AMR
implementations require constant maintenance and updates. If the
parallel and serial implementations are independent, this will double
the code maintenance costs over the original serial implementation.
This paper will describe an parallel AMR, implementation technique in
which less than 4% of the lines of code were modified.

In the succeeding sections of this paper, we will first briefly describe
some of the principles of an AMR algorithm for hyperbolic systems
of conservation laws. We will emphasize algorithmic requirements of
AMR which are important to the parallel implementation. Next we will
describe the implementation of the serial AMR algorithm. The serial
implementation is written in a mixture of the object-oriented language
C++ and FORTRAN. The choice of an object-oriented language has
important implications for the parallel implementation. Next we will
give an overview of the parallel implementation of an AMR algorithm
for gas dynamics. We will follow with a description of a high speed
I/0O subsystem which is required to maintain balance between compu-
tation and I/O in the parallel AMR implementation. We will conclude
with a description of a test problem which exercised the parallel AMR
algorithm and achieved 5.3 gigaflops on 16 processors of a Cray C-90.



2 Adaptive Mesh Refinement Basics

Adaptive Mesh Refinement for hyperbolic systems of conservation laws
is an algorithmic methodology which is useful in the solution of com-
plex systems of hyperbolic PDE’s [3]. AMR has been successfully
applied to simulation of time-unsteady gas-dynamic flows in two di-
mensions [4] and three dimensions [5]. AMR enables the simulation
of complex problems with reduced computational and storage require-
ments because it allows computational effort to be concentrated pre-
cisely where it is required to maintain high accuracy. Computational
effort is concentrated by locally refining the computational grid. AMR
algorithms manage a hierarchy of grids. The hierarchy consists of sev-
eral levels of refinement. On each level n, there is a single grid spacing
Ax,, but different levels have different grid spacings related by an
integer divisor. The coarsest grid covers the entire physical domain.
Within that domain, rectangular subregions are covered by finer grids.
Additional refinement may be achieved by recursively placing still finer
grids. Finer grids take smaller time-steps which are proportional to the
Az on the grid. As time evolves, the regions of the physical domain
requiring high resolution will in general change, requiring the hierarchy
of coarse and finer grids to adapt dynamically to the changing solution.

Figure 1 demonstrates the hierarchical grid structure in an appli-
cation of AMR to inviscid gas dynamics. The contours in Figure 1
indicate increasing density in the interaction of a shock with an in-
clined ramp. Each rectangle in the figure indicates an individual grid
in a hierarchy of nested grids. The rectangle enclosing the entire prob-
lem domain is the single grid at the coarsest level of refinement. At
the next finest level of refinement, a set of grids cover the interaction
region with higher resolution. A third and finest level of refinement
is shown in the figure as relatively small boxes. Note that the grids
on this finest level of refinement are concentrated in regions of large
gradients in the solution. This is the result of an automatic adaptation
of the grids to the changing solution.

Adaptive Mesh Refinement as described in [3, 4, 5] uses a block-
structured approach to local refinement. In this approach, the refined
regions are not individual cells, but rather large rectangular regions
with hundreds to tens of thousands of cells in each block. As a result of
the block-structured approach, it is possible to amortize the overhead
of managing the complex data structures which describe the region
over a large regular calculation. In addition, almost all of the numerical
work is done on regular arrays of floating point numbers. The amount
of time spent on irregular data structures is a very small fraction of
the total.

The time advancement procedure for AMR is recursive. If r is the
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Figure 1: Application of hyperbolic AMR for inviscid compressible gas dy-
namics in interaction of shock and inclined ramp. Rectangles are grids used
in the adaptive gridding strategy. Contours indicate changes of density.
Note that grids on finest level of refinement are automatically placed on
regions of large gradients in the solution.

refinement ratio between levels, r = Az, /Ax, 11, then the n+1th level
must make r time-steps for every single time-step of the n level. Dur-
ing the recursive evolution, the AMR algorithm must take additional
steps to maintain consistency between different levels of refinement.
Since error is proportional to a positive power of the grid spacing Az,
the values calculated on finer grids are always more accurate than the
values of the coarser grids. Wherever fine grid cells overly coarse grid
cells, the coarse grid cells are replaced with the average of the over-
lying fine cells at the completion of each coarse-grid time-step. An
additional step must be taken to maintain conservation at the bound-
ary between coarse and fine grids. Coarse grid cells which adjoin a fine



grid but are not overlain by fine grids must be updated using fluxes
which agree with the fluxes which are used on the adjoining fine grid
cells. Therefore the AMR algorithm must advance these coarse grid
cells using fluxes which are an appropriate sum of fine grid fluxes on
the shared cell faces.

3 Serial AMR Implementation

The serial implementation of the AMR algorithm for gas dynamics
comprises over 27,000 lines of code, exclusive of support libraries.
Much of the complexity and most of the code of this implementation is
concerned with the management of irregular data structures describ-
ing the placement of the finer grids within the coarser grids and the
determination of the optimum placement of the finer grids. This part
of the algorithm is not well supported by the computer language FOR-
TRAN. However, executing these parts of the algorithm do not require
a large fraction of the execution time. Most of the execution time is
spent in performing floating point operations upon regular rectangular
arrays. Therefore we have implemented the serial AMR algorithm for
gas dynamics in a combination of FORTRAN and the object-oriented
language C++ [6, 7].

The FORTRAN portion of the serial implementation is restricted
to routines which operate upon single independent rectangular regions.
The most complex data structure which they manipulate are multi-
dimensional arrays of floating point numbers. Of course the Cray
CFT77 compiler can vectorize such operations very well, with the re-
sult that the program as a whole achieves a rate of greater than 390
megaflops on a single C-90 processor. FORTRAN subroutines imple-
ment the basic finite difference time-step integration (a higher-order
Godunov method [8, 9]) and utility routines such as interpolation be-
tween grids.

The C++ implementation of the AMR algorithm for systems of
hyperbolic conservation laws is described in [10]. The C++ portion of
the implementation consists of two parts. A C++ class library called
BOXLIB supports data abstractions appropriate to rectangular block-
structured algorithms. It provides abstract data types (ADT’s) such
as rectangular regions on a multi-dimensional integer lattice, points on
an integer lattice, lists of points, floating point arrays defined on a rect-
angular region, etc. Through the use of these ADT’s, block-structured
algorithms may be described at a high level of abstraction. This im-
proves implementer productivity, and improves clarity and maintain-
ability.

The second part of the C++ implementation of AMR for hyper-



bolic systems of conservation laws consists of classes which describe
the AMR, algorithm. In contrast to BOXLIB, which contained classes
generic to rectangular block-structured algorithms, these classes each
have a direct correspondence to important parts of the AMR algo-
rithm. An important example of this correspondence is the C++ class
Grid. An object of class Grid contains all the data necessary to de-
scribe the problem solution on a rectangular region. It is convenient
and reasonable to identify an object of class Grid with one of the rect-
angles shown in Figure 1. An object of class Grid not only contains
the data describing the solution values in that region, but also infor-
mation describing the placement, the time level of the data, pointers
to adjoining Grid objects, level of refinement, etc. This encapsulation
of data within a single data structure is in contrast to usual practice
in FORTRAN where the data would be distributed among a number
of arrays.

One particularly useful attribute of the C++ implementation is
that the C++ code is almost entirely dimension independent. The
same code may be compiled for one, two, or three spatial dimensions.
This is a result of using high level ADT’s which describe natural geo-
metric concepts, such as rectangular regions, rather than low level data
types such as arrays of integers which are naturally dimension depen-
dent. Another useful attribute of the C++/FORTRAN implementa-
tion is that the organizational level of the implementation, written in
C++, is independent of physics being simulated. The physics is to-
tally described in the FORTRAN portion of the implementation, such
as the finite difference time-step integration. This separation makes it
very easy to use the same AMR superstructure for completely different
physics packages.

4 Shared-memory AMR

Similar to the way that AMR utilizes a coarse-grained adaptivity, the
parallel implementation utilizes a coarse-grained parallelism where the
fundamental unit of parallelism is based on the C++4 Grid class. Be-
cause Grid objects in AMR are relatively small, it is not very efficient
to employ a do-loop approach to parallelism where many processors
work on a single Grid object simultaneously. However, the number of
Grid objects, particularly in 3D, may number many hundreds. There
is substantial opportunity for parallelism in employing many proces-
sors to operate independently on different Grid objects. Any parallel
overhead needed to support this decomposition may be amortized over
the work needed to operate upon a Grid object. Because time-step
advancing a Grid object takes a substantial fraction of a second for a



single C-90 processor, the parallel inefficiency due to overhead is quite
small.

Special care is required in parallel implementations to maintain
parallel efficiency. High parallel efficiency is achieved by maintaining
an equal distribution of work among processors. Otherwise proces-
sors will be forced to wait in idleness while an overburdened processor
completes its work. Maintaining an equal distribution of work among
processors is an issue when the work quanta are not uniform, as is
true in AMR with Grid objects of greatly differing sizes. This prob-
lem is exacerbated when the parallel implementation is to be executed
on a computer in non-dedicated mode. In non-dedicated mode, the
parallel program will compete for computational resources with other
processes. Since the results of the competition for resources cannot be
predicted at compile time, it is necessary to adjust the work distribu-
tion as the parallel program runs.

The parallel implementation of AMR, for hyperbolic systems of con-
servation laws employs a ready-queue [11] approach to load balancing.
A C++ class called ReadyQueue maintains a list of Grid objects which
have not been operated upon, a list of Grid objects which have been
operated upon, and a list of Grid objects which are currently being
operated upon. Each processor iterates in a loop where it takes Grid
objects from the ready-list, operates upon them, and returns them to
the finished list. Locks [11] prevent different processors from manipu-
lating the lists simultaneously. Different processors are able to operate
upon different Grid objects simultaneously. Figure 2 illustrates this
cycle.

The C++ class ReadyQueue is constructed so that the operation
of ready queues is very similar to iterating across Grid objects in the
serial implementation. The ReadyQueue class takes a list of Grid ob-
jects and a pointer to a function which operates upon Grid objects as
arguments. It then iterates across the Grid objects in parallel, apply-
ing the function to each. As a concrete example, consider a SERIAL
loop which would be written as follows:

GridList gl[MAXLEV];
int level;

void advance( Grid *);
Grid *gptr;

for( gptr=glllevel] .first();
gptr != NULL;
gptr = glllevel].next(gptr) ){
gptr->advance() ;
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Figure 2: Basic iteration cycle of each processor in Ready Queue.

This code fragment applies the function advance to each Grid object
in one level of refinement. The same code in the PARALLEL imple-

mentation is very similar:

GridQ *gq;
gq = new GridQ(NTASKS);

GridList gl[MAXLEV];
int level;
void advance( Grid *);

gq->setup( glllevell,advance);
gq->doParallel();



The encapsulation of important data within the Grid class facili-
tates the synchronization of parallel operations upon the Grid objects.
A major problem in parallel implementations is to properly synchro-
nize the processors in their access to data in order to prevent proces-
sors from interfering with each other. Because a Grid object contains
almost all of the information necessary to perform operations upon
it, allowing only a single processor to operate upon a given Grid ob-
ject obviates most of the synchronization problems. However, not all
operations can be performed with just the data contained within a
Grid object. For example, to time-step advance a Grid object requires
boundary data which resides upon adjacent Grid objects. We therefore
also require that some kinds of read-only data be available from Grid
objects and that a Grid object not modify such data during a parallel
operation. The parallel AMR implementation described in this paper
has not required further synchronization beyond this requirement and
the access-locks described for the ReadyQueue class.

All parallelism resides in the C++ portions of the implementation.
FORTRAN portions only operate upon single rectangular regions and
are therefore unaware of parallelism across Grid objects. This main-
tains the independence of the physics packages, written in FORTRAN,
from the organizational levels of the AMR implementation and facili-
tates easy replacement of physics packages. This also makes it easier
to develop physics packages on serial architectures, including worksta-
tions, and then realize parallel performance without further develop-
ment upon the physics package. The parallel AMR implementation
has only four parallel sections:

1. time-step integration of all the Grid objects of a single level of
refinement.

2. enforcement of consistency between coarse grids and fine grids.

3. Richardson error estimation during calculation of optimum grid
positions.

4. initialization of new Grid objects from data in old Grid objects
during calculation of optimum grid positions.

In all, less than one thousand lines were changed in the 27 thousand
line serial implementation to make it parallel. This includes totally new
classes which were added to manage the ready-queue and high-speed
I/0, which is described in the next section.



5 High Speed Output for Parallel AMR

In parallel implementations which run on dedicated or nearly-dedicated
computers, high performance output can be quite important. If a com-
puter is shared with many processes, when one process is writing results
to disk, another process can utilize the CPU. However, if the computer
is dedicated or nearly dedicated, time spent in output is lost. To give
some figures typical of the parallel AMR implementation: a program
will run for 9300 wall-clock seconds and output 8.1 gigabytes of data.
If the data were written to disk at an average rate of 8 megabytes per
second, this would take 1012 seconds. This would cause the parallel
computer to spend more than 10% of the time with no processors per-
forming calculations. This shows the necessity of providing high speed
output mechanisms for parallel programs which output large amounts
of data.

For the parallel AMR implementation, we have implemented an
output method which utilizes the Solid State Disk of the NERSC Cray
C-90 to asynchronously write data to disk while the CPU performs
computations [12]. Figure 3 is a diagram showing interconnection of
CPU to I/O devices on the C-90. The high speed output is performed
as follows. When the CPU writes data, instead of writing directly to
disk, it writes to buffers allocated on the SSD through a 2 gigabyte per
second channel. After the CPU is finished writing the data, it returns
to computation. While the CPU computes, the data is written from
the SSD to the I/O Cluster via a high speed channel which by-passes
the CPU. The I/O Cluster in turn writes the data to disk. From the
point of view of the CPU, the time expended writing the output was
only the time it takes to write to the SSD. In practice, when writing
program state to disk in large parallel runs, we have reached speeds of
300 megabytes per second effective speed, approximately 30 times the
speed of writing directly to slow disk.

As described previously, we prefer to minimize the difference be-
tween the parallel implementation and the serial implementation of
AMR for hyperbolic systems of conservation laws. Because output is
done in many places in the serial implementation, we have created a
C++ class called SDSstream which manages the high speed output.
The SDSstream class is derived from the standard C++ output class,
ostream. Since it is a derived class of ostream, every function which
takes an ostream as an argument will accept a SDSstream. It is not
necessary to modify large numbers of functions to allow them to use
the high speed output class. The C++ class SDSstream performs 5
functions:

1. allocate large buffers of the SSD.
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Figure 3: Functional diagram showing interconnection of CPU, SSD, and
I/O devices on NERSC C-90.

2. writes data to buffers on SSD.
3. initiates asynchronous write on buffers when full.

4. monitors status of asynchronous writes and reuses buffer when
write is complete.

5. closes files when all buffers have been written.

6 Example

We have utilized the parallel implementation of AMR for hyperbolic
systems of conservation laws in a large scale simulation of inviscid gas
dynamics in a 3D spatially evolving mixing layer. Figure 4 shows a
side view of the physical domain. Two streams of gas enter on the
right hand side separated by a splitter plate. One stream is super-



Side View

high pressure

M>1
increasing turbulence <
/\/\/
low pressure
M<1

Figure 4: Side view of physical domain in 3D spatially evolving mixing layer
computation.

sonic and at high pressure while the second is sub-sonic and at low
pressure. A stationary shock forms at the inlet which is trapped in
the low pressure layer as it flows downstream. The trapped shock
sets up a cellular structure with primary and secondary instabilities.
As the gas flows downstream, the 3D secondary instabilities begin to
dominate the flow and eventually transition the flow to 3D turbulent
flow. Figure 5 is a perspective rendering of density at one time instant
showing transition to turbulence. On the finest level of refinement, the
computational space covers a region 1040 by 104 by 64 cells wide.

In one of the production runs performed on this problem, 9300 wall-
clock seconds were expended on the 16 processor NERSC C-90. During
this time, 8.1 gigabytes of data were written in 307 files. The run
utilized 128,209 CPU seconds and achieved a rate of 5.293 gigaflops,
as measured by the hardware performance monitor. This includes the
time spent doing I/O at the very beginning and end of the run, where
overlapping I/O with calculation is not possible. Peak rates exclusive
of the beginning and end would be higher.

Figure 6 shows the amount of time during the computation as
a function of number of CPU’s working on the calculation. Several
points should be noted in Figure 6. First, although the time spent in
each processor-state increases quickly as the number of processors in-
creases, the time spent with 16 processors is not greatly different from
15 processors. This calculation was performed on the NERSC C-90
in nearly-dedicated mode. In nearly-dedicated mode, all of the batch
queues were stopped. However, users were still able to run programs in
foreground mode on the C-90. Because the Special Parallel Program-
ming Allocation (SPPA) runs were made at night and on weekends,
the number of foreground users was small, but it was not zero. We
have observed in some shorter runs that the processor usage peaks
sharply at 16 processors. Second, there is a perceptible peak in this



Figure 5: 3D perspective rendering of density in spatially evolving mixing
layer.
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Figure 6: Time spent in calculation with N processors working on calcula-
tion.

graph at 9 processors. This calculation utilized more than a hundred
grids on the finest level, but only 9 at the coarsest level. Calculations
on the coarsest level would then contribute to the 9 processor state.
Lastly, the time spent with one processor indicates all non-parallel time
spent in execution, including the time managing high-speed I/0. On
the average, 13.85 processors were active on the computation.

7 Conclusions

Adaptive Mesh Refinement(AMR) is a algorithmic technique which
has been shown to save as much as an order of magnitude in computa-
tional time on 3D hyperbolic systems of partial differential equations
(PDE’s) [5]. The results of this paper demonstrate that AMR can run
on parallel shared memory architectures with high efficiency. Further-
more, due to the organization we had previously imposed upon our
serial implementation of AMR for hyperbolic systems of conservation
laws, we were able to implement parallel AMR with very little new



code. Our object-oriented implementation was a major cause of this
result. We have also used object-oriented techniques to encapsulate
a special parts of the parallel implementation, such as ready-queue
maintenance and high-speed output.
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